Without actually calculating the cubes, find the value of each of the following: (28)3+(β15)3+(β13)3.
Find the value of (28)3+(β15)3+(β13)3.
We know, a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
And a3+b3+c3=3abc if a+b+c=0
Now, (28)3+(β15)3+(β13)3.
here, a=28,b=-15,c=-13
And sum is
=28+-15+-13=28-28=0
So,
(28)3+(β15)3+(β13)3=3Γ28Γ-15Γ-13=16380
Thus, (28)3+(β15)3+(β13)3=16380