wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Without expanding, show that the values of each of the following determinants are zero:
(i) 82712351643

(ii) 6-322-12-1052

(iii) 23713175152012

(iv) 1/aa2bc1/bb2ac1/cc2ab

(v) a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b

(vi) 1aa2-bc1bb2-ac1cc2-ab

(vii) 491639742623

(viii) 0xy-x0z-y-z0

(ix) 143673543172

(x) 12223242223242523242526242526272

(xi) abca+2xb+2yc+2zxyz

(xii) 2x+2-x22x-2-x213x+3-x23x-3-x214x+4-x24x-4-x21

(xiii) sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)

(xiv) sin223°sin267°cos180°-sin267°-sin223°cos2180°cos180°sin223°sin267°

(xv) cosx+y-sinx+ycos2ysinxcosxsiny-cosxsinx-cosy

(xvi) 23+35515+465103+115155

(xvii) sin2AcotA1sin2BcotB1sin2CcotC1, where A, B, C are the angles of ABC.

Open in App
Solution

(i) =82712351643=027035043 Applying C1C1-4C2=0(ii) =6-322-12-1052=0-320-12052 Applying C1C1+2C2=0

(iii) =23713175152012=2371317513175 Applying R3R3-R1=0(iv) =1aa2bc1bb2ac1cc2ab=1a3abc1b3abc1c3abc Applying R1aR1, R2bR2 and R3cR3=abc1a311b311c31=0(v) =a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b=aaa2a2a2a4a+b5a+b6a+b Applying R1R2-R1 and R2R3-R2=2aaaaaa4a+b5a+b6a+b=0(vi) =1aa2-bc1bb2-ac1cc2-ab=0a-ba2-bc-b2+ac0b-cb2-ac-c2+ab1cc2-ab Applying R1R1-R2, R2R2-R3=0a-ba-ba+b+ca-b0b-cb-cb+c+ab-c1cc2-ab=a-bb-c01a+b+c01a+b+c1cc2-ab=0(vii) =491639742623=116774223 Applying C1C1-8C3=0(viii) =0xy-x0z-y-z0=xyzxyz0xy-x0z-y-z0=1xyz0xzyz-xy0zy-yx-zx0=1xyz-2xy02yz-xy0zy-yx-zx0 Applying R1R1+R2+R3=1xyz000-xy0zy-yx-zx0=0 Applying R1R1-2R2(ix)=143673543172=116774332=0 Applying C2C2-7C3

x)=12223242223242523242526242526272=14916491625916253616253649=1491649162557911791113 Applying R3R3-R2 and R4R4-R3=14916491625791113791113=0 Applying R32+R3xi) =abca+2xb+2yc+2zxyz=a+2xb+2yc+2za+2xb+2yc+2zxyz Applying R1R1+2R3=000a+2xb+2yc+2zxyz=0 Applying R1R1-R2


(xii)
2x+2-x22x-2-x213x+3-x23x-3-x214x+4-x24x-4-x21=22x+2-2x+222x+2-2x-2132x+3-2x+232x+3-2x-2142x+4-2x+242x+4-2x-21=422x+2-2x-21432x+3-2x-21442x+4-2x-21 Applying C1C1-C2=4122x+2-2x-21132x+3-2x-21142x+4-2x-21=0

(xiii)
sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)=sinαsinδcosαcosδcos(α+δ)sinβsinδcosβcosδcos(β+δ)sinγsinδcosγcosδcos(γ+δ) Applying C1sinδ C1 and C2cosδ C2=sinαsinδcos(α+δ)cos(α+δ)sinβsinδcos(β+δ)cos(β+δ)sinγsinδcos(γ+δ)cos(γ+δ) Applying C2C2-C1=0

(xiv)
sin223°sin267°cos180°-sin267°-sin223°cos2180°cos180°sin223°sin267°=sin223°sin290-23°-1-sin290-23°-sin223°1-1sin223°sin290-23°=sin223°cos223°-1-cos223°-sin223°1-1sin223°cos223°=sin223°+cos223°cos223°-1-cos223°-sin223°-sin223°1-1+sin223°sin223°cos223° Applying C1C1+C2=11-1-1-sin223°1-cos223°sin223°cos223°=-1-11-11-sin223°1cos223°sin223°cos223°=0

(xv)
cosx+y-sinx+ycos2ysinxcosxsiny-cosxsinx-cosy=1sinycosycosx+y-sinx+ycos2ysinxsinycosxsinysin2y-cosxcosysinxcosy-cos2y Applying R2siny R2 and R3cosy R3=1sinycosycosx+y-sinx+ycos2ysinxsiny-cosxcosycosxsiny+sinxcosysin2y-cos2y-cosxcosysinxcosy-cos2y Applying R2R2+R3=-1sinycosycosx+y-sinx+ycos2ycosx+y-sinx+ycos2y-cosxcosysinxcosy-cos2y=0

(xvi)
23+35515+465103+115155=355155103155+235546510115155=315555103155+2315525105155=3×51155510335+23×51512525155=0+0=0

(xvii)
sin2AcotA1sin2BcotB1sin2CcotC1=sin2A-sin2BcotA-cotB0sin2BcotB1sin2C-sin2BcotC-cotB0 Applying R1R1-R2 and R3R3-R2=sinA+BsinA-BcosAsinB-cosBsinAsinAsinB0sin2BcotB1sinC+BsinC-BcosCsinB-cosBsinCsinBsinC0=sinπ-CsinA-B-sinA-BsinAsinB0sin2BcotB1sinπ-AsinC-B-sinC-BsinBsinC0 A+B+C=π=sinCsinA-B-sinA-BsinAsinB0sin2BcosBsinB1sinAsinC-B-sinC-BsinBsinC0=sinA-BsinC-BsinBsinC-1sinA0sin2BcosB1sinA-1sinC0=sinA-BsinC-BsinBsinAsinCsinCsinA-10sin2BcosB1sinAsinC-10 Applying R1sinA R1 and R3sinC R3=sinA-BsinC-BsinBsinAsinC000sin2BcosB1sinAsinC-10 Applying R1R1-R3=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating One Function wrt Other
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon