2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative of One Function w.r.t Another
Without expan...
Question
Without expanding, show that the values of each of the following determinants are zero:
(i)
8
2
7
12
3
5
16
4
3
(ii)
6
-
3
2
2
-
1
2
-
10
5
2
(iii)
2
3
7
13
17
5
15
20
12
(iv)
1
/
a
a
2
b
c
1
/
b
b
2
a
c
1
/
c
c
2
a
b
(v)
a
+
b
2
a
+
b
3
a
+
b
2
a
+
b
3
a
+
b
4
a
+
b
4
a
+
b
5
a
+
b
6
a
+
b
(vi)
1
a
a
2
-
b
c
1
b
b
2
-
a
c
1
c
c
2
-
a
b
(vii)
49
1
6
39
7
4
26
2
3
(viii)
0
x
y
-
x
0
z
-
y
-
z
0
(ix)
1
43
6
7
35
4
3
17
2
(x)
1
2
2
2
3
2
4
2
2
2
3
2
4
2
5
2
3
2
4
2
5
2
6
2
4
2
5
2
6
2
7
2
(xi)
a
b
c
a
+
2
x
b
+
2
y
c
+
2
z
x
y
z
(xii)
2
x
+
2
-
x
2
2
x
-
2
-
x
2
1
3
x
+
3
-
x
2
3
x
-
3
-
x
2
1
4
x
+
4
-
x
2
4
x
-
4
-
x
2
1
(xiii)
sin
α
cos
α
cos
(
α
+
δ
)
sin
β
cos
β
cos
(
β
+
δ
)
sin
γ
cos
γ
cos
(
γ
+
δ
)
(xiv)
sin
2
23
°
sin
2
67
°
cos
180
°
-
sin
2
67
°
-
sin
2
23
°
cos
2
180
°
cos
180
°
sin
2
23
°
sin
2
67
°
(xv)
cos
x
+
y
-
sin
x
+
y
cos
2
y
sin
x
cos
x
sin
y
-
cos
x
sin
x
-
cos
y
(xvi)
23
+
3
5
5
15
+
46
5
10
3
+
115
15
5
(xvii)
sin
2
A
cot
A
1
sin
2
B
cot
B
1
sin
2
C
cot
C
1
,
where
A
,
B
,
C
are
the
angles
of
∆
A
B
C
.
Open in App
Solution
(
i
)
∆
=
8
2
7
12
3
5
16
4
3
=
0
2
7
0
3
5
0
4
3
Applying
C
1
→
C
1
-
4
C
2
⇒
∆
=
0
(
i
i
)
∆
=
6
-
3
2
2
-
1
2
-
10
5
2
=
0
-
3
2
0
-
1
2
0
5
2
Applying
C
1
→
C
1
+
2
C
2
⇒
∆
=
0
(
i
i
i
)
∆
=
2
3
7
13
17
5
15
20
12
=
2
3
7
13
17
5
13
17
5
Applying
R
3
→
R
3
-
R
1
⇒
∆
=
0
(
i
v
)
∆
=
1
a
a
2
b
c
1
b
b
2
a
c
1
c
c
2
a
b
=
1
a
3
a
b
c
1
b
3
a
b
c
1
c
3
a
b
c
Applying
R
1
→
a
R
1
,
R
2
→
b
R
2
and
R
3
→
c
R
3
=
a
b
c
1
a
3
1
1
b
3
1
1
c
3
1
⇒
∆
=
0
(
v
)
∆
=
a
+
b
2
a
+
b
3
a
+
b
2
a
+
b
3
a
+
b
4
a
+
b
4
a
+
b
5
a
+
b
6
a
+
b
=
a
a
a
2
a
2
a
2
a
4
a
+
b
5
a
+
b
6
a
+
b
Applying
R
1
→
R
2
-
R
1
and
R
2
→
R
3
-
R
2
=
2
a
a
a
a
a
a
4
a
+
b
5
a
+
b
6
a
+
b
=
0
(
v
i
)
∆
=
1
a
a
2
-
b
c
1
b
b
2
-
a
c
1
c
c
2
-
a
b
=
0
a
-
b
a
2
-
b
c
-
b
2
+
a
c
0
b
-
c
b
2
-
a
c
-
c
2
+
a
b
1
c
c
2
-
a
b
Applying
R
1
→
R
1
-
R
2
,
R
2
→
R
2
-
R
3
=
0
a
-
b
a
-
b
a
+
b
+
c
a
-
b
0
b
-
c
b
-
c
b
+
c
+
a
b
-
c
1
c
c
2
-
a
b
=
a
-
b
b
-
c
0
1
a
+
b
+
c
0
1
a
+
b
+
c
1
c
c
2
-
a
b
⇒
∆
=
0
(
v
i
i
)
∆
=
49
1
6
39
7
4
26
2
3
=
1
1
6
7
7
4
2
2
3
Applying
C
1
→
C
1
-
8
C
3
⇒
∆
=
0
(
v
i
i
i
)
∆
=
0
x
y
-
x
0
z
-
y
-
z
0
=
x
y
z
x
y
z
0
x
y
-
x
0
z
-
y
-
z
0
=
1
x
y
z
0
x
z
y
z
-
x
y
0
z
y
-
y
x
-
z
x
0
=
1
x
y
z
-
2
x
y
0
2
y
z
-
x
y
0
z
y
-
y
x
-
z
x
0
Applying
R
1
→
R
1
+
R
2
+
R
3
=
1
x
y
z
0
0
0
-
x
y
0
z
y
-
y
x
-
z
x
0
=
0
Applying
R
1
→
R
1
-
2
R
2
(
i
x
)
∆
=
1
43
6
7
35
4
3
17
2
=
1
1
6
7
7
4
3
3
2
=
0
Applying
C
2
→
C
2
-
7
C
3
x
)
∆
=
1
2
2
2
3
2
4
2
2
2
3
2
4
2
5
2
3
2
4
2
5
2
6
2
4
2
5
2
6
2
7
2
=
1
4
9
16
4
9
16
25
9
16
25
36
16
25
36
49
=
1
4
9
16
4
9
16
25
5
7
9
11
7
9
11
13
Applying
R
3
→
R
3
-
R
2
and
R
4
→
R
4
-
R
3
=
1
4
9
16
4
9
16
25
7
9
11
13
7
9
11
13
=
0
Applying
R
3
→
2
+
R
3
xi
)
∆
=
a
b
c
a
+
2
x
b
+
2
y
c
+
2
z
x
y
z
=
a
+
2
x
b
+
2
y
c
+
2
z
a
+
2
x
b
+
2
y
c
+
2
z
x
y
z
Applying
R
1
→
R
1
+
2
R
3
=
0
0
0
a
+
2
x
b
+
2
y
c
+
2
z
x
y
z
=
0
Applying
R
1
→
R
1
-
R
2
(xii)
2
x
+
2
-
x
2
2
x
-
2
-
x
2
1
3
x
+
3
-
x
2
3
x
-
3
-
x
2
1
4
x
+
4
-
x
2
4
x
-
4
-
x
2
1
=
2
2
x
+
2
-
2
x
+
2
2
2
x
+
2
-
2
x
-
2
1
3
2
x
+
3
-
2
x
+
2
3
2
x
+
3
-
2
x
-
2
1
4
2
x
+
4
-
2
x
+
2
4
2
x
+
4
-
2
x
-
2
1
=
4
2
2
x
+
2
-
2
x
-
2
1
4
3
2
x
+
3
-
2
x
-
2
1
4
4
2
x
+
4
-
2
x
-
2
1
Applying
C
1
→
C
1
-
C
2
=
4
1
2
2
x
+
2
-
2
x
-
2
1
1
3
2
x
+
3
-
2
x
-
2
1
1
4
2
x
+
4
-
2
x
-
2
1
=
0
(xiii)
sin
α
cos
α
cos
(
α
+
δ
)
sin
β
cos
β
cos
(
β
+
δ
)
sin
γ
cos
γ
cos
(
γ
+
δ
)
=
sin
α
sin
δ
cos
α
cos
δ
cos
(
α
+
δ
)
sin
β
sin
δ
cos
β
cos
δ
cos
(
β
+
δ
)
sin
γ
sin
δ
cos
γ
cos
δ
cos
(
γ
+
δ
)
Applying
C
1
→
sin
δ
C
1
and
C
2
→
cos
δ
C
2
=
sin
α
sin
δ
cos
(
α
+
δ
)
cos
(
α
+
δ
)
sin
β
sin
δ
cos
(
β
+
δ
)
cos
(
β
+
δ
)
sin
γ
sin
δ
cos
(
γ
+
δ
)
cos
(
γ
+
δ
)
Applying
C
2
→
C
2
-
C
1
=
0
(xiv)
sin
2
23
°
sin
2
67
°
cos
180
°
-
sin
2
67
°
-
sin
2
23
°
cos
2
180
°
cos
180
°
sin
2
23
°
sin
2
67
°
=
sin
2
23
°
sin
2
90
-
23
°
-
1
-
sin
2
90
-
23
°
-
sin
2
23
°
1
-
1
sin
2
23
°
sin
2
90
-
23
°
=
sin
2
23
°
cos
2
23
°
-
1
-
cos
2
23
°
-
sin
2
23
°
1
-
1
sin
2
23
°
cos
2
23
°
=
sin
2
23
°
+
cos
2
23
°
cos
2
23
°
-
1
-
cos
2
23
°
-
sin
2
23
°
-
sin
2
23
°
1
-
1
+
sin
2
23
°
sin
2
23
°
cos
2
23
°
A
p
p
l
y
i
n
g
C
1
→
C
1
+
C
2
=
1
1
-
1
-
1
-
sin
2
23
°
1
-
cos
2
23
°
sin
2
23
°
cos
2
23
°
=
-
1
-
1
1
-
1
1
-
sin
2
23
°
1
cos
2
23
°
sin
2
23
°
cos
2
23
°
=
0
(xv)
cos
x
+
y
-
sin
x
+
y
cos
2
y
sin
x
cos
x
sin
y
-
cos
x
sin
x
-
cos
y
=
1
sin
y
cos
y
cos
x
+
y
-
sin
x
+
y
cos
2
y
sin
x
sin
y
cos
x
sin
y
sin
2
y
-
cos
x
cos
y
sin
x
cos
y
-
cos
2
y
Applying
R
2
→
sin
y
R
2
and
R
3
→
cos
y
R
3
=
1
sin
y
cos
y
cos
x
+
y
-
sin
x
+
y
cos
2
y
sin
x
sin
y
-
cos
x
cos
y
cos
x
sin
y
+
sin
x
cos
y
sin
2
y
-
cos
2
y
-
cos
x
cos
y
sin
x
cos
y
-
cos
2
y
Applying
R
2
→
R
2
+
R
3
=
-
1
sin
y
cos
y
cos
x
+
y
-
sin
x
+
y
cos
2
y
cos
x
+
y
-
sin
x
+
y
cos
2
y
-
cos
x
cos
y
sin
x
cos
y
-
cos
2
y
=
0
(xvi)
23
+
3
5
5
15
+
46
5
10
3
+
115
15
5
=
3
5
5
15
5
10
3
15
5
+
23
5
5
46
5
10
115
15
5
=
3
1
5
5
5
5
10
3
15
5
+
23
1
5
5
2
5
10
5
15
5
=
3
×
5
1
1
5
5
5
10
3
3
5
+
23
×
5
1
5
1
2
5
2
5
15
5
=
0
+
0
=
0
(xvii)
sin
2
A
cot
A
1
sin
2
B
cot
B
1
sin
2
C
cot
C
1
=
sin
2
A
-
sin
2
B
cot
A
-
cot
B
0
sin
2
B
cot
B
1
sin
2
C
-
sin
2
B
cot
C
-
cot
B
0
Applying
R
1
→
R
1
-
R
2
and
R
3
→
R
3
-
R
2
=
sin
A
+
B
sin
A
-
B
cos
A
sin
B
-
cos
B
sin
A
sin
A
sin
B
0
sin
2
B
cot
B
1
sin
C
+
B
sin
C
-
B
cos
C
sin
B
-
cos
B
sin
C
sin
B
sin
C
0
=
sin
π
-
C
sin
A
-
B
-
sin
A
-
B
sin
A
sin
B
0
sin
2
B
c
o
t
B
1
sin
π
-
A
sin
C
-
B
-
sin
C
-
B
sin
B
sin
C
0
∵
A
+
B
+
C
=
π
=
sin
C
sin
A
-
B
-
sin
A
-
B
sin
A
sin
B
0
sin
2
B
cos
B
sin
B
1
sin
A
sin
C
-
B
-
sin
C
-
B
sin
B
sin
C
0
=
sin
A
-
B
sin
C
-
B
sin
B
sin
C
-
1
sin
A
0
sin
2
B
cos
B
1
sin
A
-
1
sin
C
0
=
sin
A
-
B
sin
C
-
B
sin
B
sin
A
sin
C
sin
C
sin
A
-
1
0
sin
2
B
cos
B
1
sin
A
sin
C
-
1
0
Applying
R
1
→
sin
A
R
1
and
R
3
→
sin
C
R
3
=
sin
A
-
B
sin
C
-
B
sin
B
sin
A
sin
C
0
0
0
sin
2
B
cos
B
1
sin
A
sin
C
-
1
0
Applying
R
1
→
R
1
-
R
3
=
0
Suggest Corrections
0
Similar questions
Q.
Without expanding, show that the values of each of the following determinants are zero:
(i)
8
2
7
12
3
5
16
4
3
(ii)
6
-
3
2
2
-
1
2
-
10
5
2
(iii)
2
3
7
13
17
5
15
20
12
(iv)
1
/
a
a
2
b
c
1
/
b
b
2
a
c
1
/
c
c
2
a
b
(v)
a
+
b
2
a
+
b
3
a
+
b
2
a
+
b
3
a
+
b
4
a
+
b
4
a
+
b
5
a
+
b
6
a
+
b
(vi)
1
a
a
2
-
b
c
1
b
b
2
-
a
c
1
c
c
2
-
a
b
(vii)
49
1
6
39
7
4
26
2
3
(viii)
0
x
y
-
x
0
z
-
y
-
z
0
(ix)
1
43
6
7
35
4
3
17
2
(x)
1
2
2
2
3
2
4
2
2
2
3
2
4
2
5
2
3
2
4
2
5
2
6
2
4
2
5
2
6
2
7
2
(xi)
a
b
c
a
+
2
x
b
+
2
y
c
+
2
z
x
y
z
Q.
Without expanding , find the value of
∣
∣ ∣
∣
a
+
b
2
a
+
b
3
a
+
b
2
a
+
b
3
a
+
b
4
a
+
b
4
a
+
b
5
a
+
b
6
a
+
b
∣
∣ ∣
∣
Q.
If
x
,
y
,
z
∈
R
then find Determinant
⎛
⎜ ⎜ ⎜
⎝
(
2
x
+
2
−
x
)
2
(
2
x
−
2
−
x
)
2
1
(
3
x
+
3
−
x
)
2
(
3
x
−
3
−
x
)
2
1
(
4
x
+
4
−
x
)
2
(
4
x
−
4
−
x
)
2
1
⎞
⎟ ⎟ ⎟
⎠
Q.
sin
2
23
°
+
sin
2
67
°
cos
2
13
°
+
cos
2
77
°
+
sin
2
59
°
+
cos
59
°
sin
21
°
=
?
(a) 3
(b) 2
(c) 1
(d) 0
Q.
If x, y, z ∈ R, the value of the determinant
2
x
+
2
-
x
2
2
x
-
2
-
x
2
1
3
x
+
3
-
x
2
3
x
-
3
-
x
2
1
4
x
+
4
-
x
2
4
x
-
4
-
x
2
1
is equal to ________________.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Differentiating One Function wrt Other
MATHEMATICS
Watch in App
Explore more
Derivative of One Function w.r.t Another
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app