wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Without expanding the determinants, prove that ∣ ∣ ∣aa2bcbb2cacc2ab∣ ∣ ∣=∣ ∣ ∣1a2a31b2b31c2c3∣ ∣ ∣

Open in App
Solution

∣ ∣ ∣aa2bcbb2cacc2ab∣ ∣ ∣=∣ ∣ ∣1a2a31b2b31c2c3∣ ∣ ∣
L.H.S=
∣ ∣ ∣aa2bcbb2cacc2ab∣ ∣ ∣
R1R1R2,R2R2R3
=∣ ∣ ∣(aba2b2bcca(bc)b2c2caabcc2ab∣ ∣ ∣=∣ ∣ ∣ab(ab)(a+b)c(ab)bc(bc)(b+c)a(bc)cc2ab∣ ∣ ∣
=(ab)(bc)∣ ∣1a+bc1b+cacc2ab∣ ∣
R1R1R2
=(ab)(bc)∣ ∣ ∣0(a+b)(b+c)c+a1b+cacc2ab∣ ∣ ∣
=(ab)(bc)∣ ∣0acac1b+cacc2ab∣ ∣
=(ab)(bc)(ac)∣ ∣0111b+cacc2ab∣ ∣
C3C3C2
=(ab)(bc)(ac)∣ ∣0101b+cabccc2abc2∣ ∣
=(ab)(bc)(ca)[b2+c2+bc(b+c)(a+b+c)]
=+(ab)(bc)(ca)(ab+bc+ca)
L.H.S=R.H.S. Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon