1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Determinants
Without expan...
Question
Without expanding the determinants, prove that
∣
∣ ∣
∣
a
b
c
x
y
z
p
q
r
∣
∣ ∣
∣
=
∣
∣ ∣
∣
y
b
q
x
a
p
z
c
r
∣
∣ ∣
∣
=
∣
∣ ∣
∣
x
y
z
p
q
r
a
b
c
∣
∣ ∣
∣
.
Open in App
Solution
∣
∣ ∣
∣
a
b
c
x
y
z
p
q
r
∣
∣ ∣
∣
=
∣
∣ ∣
∣
y
b
q
x
a
p
z
c
r
∣
∣ ∣
∣
∣
∣ ∣
∣
x
y
z
p
q
r
a
b
c
∣
∣ ∣
∣
⇒
Δ
1
=
Δ
2
=
Δ
3
Δ
2
=
∣
∣ ∣
∣
y
b
q
x
a
p
z
c
r
∣
∣ ∣
∣
Taking transpose as
|
A
|
=
∣
∣
A
T
∣
∣
⇒
Δ
2
=
∣
∣ ∣
∣
y
x
z
b
a
c
q
z
r
∣
∣ ∣
∣
Interchanging
C
1
and
C
2
⇒
Δ
2
=
−
∣
∣ ∣
∣
x
y
z
a
b
c
p
q
r
∣
∣ ∣
∣
Interchanging
R
1
and
R
2
⇒
Δ
2
=
∣
∣ ∣
∣
a
b
c
x
y
z
p
q
r
∣
∣ ∣
∣
.
.
.
.
.
.
(
i
)
Δ
3
=
∣
∣ ∣
∣
x
y
z
p
q
r
a
b
c
∣
∣ ∣
∣
Interchanging
R
1
and
R
3
⇒
Δ
3
=
−
∣
∣ ∣
∣
a
b
c
p
q
r
x
y
z
∣
∣ ∣
∣
Interchanging
R
2
and
R
3
⇒
Δ
3
=
∣
∣ ∣
∣
a
b
c
x
y
z
p
q
r
∣
∣ ∣
∣
.
.
.
.
.
(
i
i
)
From
(
i
)
and
(
i
i
)
Δ
1
=
Δ
2
=
Δ
3
Hence proved.
Suggest Corrections
1
Similar questions
Q.
Without expanding, prove that
a
b
c
x
y
z
p
q
r
=
x
y
z
p
q
r
a
b
c
=
y
b
q
x
a
p
z
c
r
Q.
Without expanding the determinants, prove that
∣
∣ ∣ ∣
∣
a
a
2
b
c
b
b
2
c
a
c
c
2
a
b
∣
∣ ∣ ∣
∣
=
∣
∣ ∣ ∣
∣
1
a
2
a
3
1
b
2
b
3
1
c
2
c
3
∣
∣ ∣ ∣
∣
Q.
If
Δ
1
=
∣
∣ ∣
∣
a
b
c
x
y
z
p
q
r
∣
∣ ∣
∣
and
Δ
2
=
∣
∣ ∣
∣
y
b
q
x
a
p
z
c
r
∣
∣ ∣
∣
then
Δ
1
is equal to
Q.
Without expanding the determinant, prove that