Concept: 1 Mark
Steps: 2 Marks
Answer: 1 Marks
Given: x2+2(m−1)x+(m+5)=0
Comparing it with quadratic equation ax2+bx+c=0, we get
a=1, b=2(m-1)and c=m+5
Now we know that for real and equal roots,b2−4ac=0
⇒[2(m−1)]2−4×1×(m+5)=0⇒4(m2+1−2m)−4m−20=0⇒4m2+4−8m−4m−20=0⇒4m2−12m−16=0
⇒m2−3m−4=0⇒m2−4m+m−4=0⇒m(m−4)+1(m−4)=0⇒(m+1)(m−4)=0
Either m + 1 = 0 or m - 4 = 0
⇒m=−1 or m = 4
Hence, the values of m are -1 and 4.