For real and equal roots of equation
ax2+bx+c=0,
Discriminant (D)=0
Where,D=b2−4ac
Since for equation x2+2(m−1)x+(m+5)=0
Discriminant (D)=[2(m−1)]2−4×1(m+5)=0
⇒4(m−1)2−4(m+5)=0
⇒4[(m−1)2−(m+5)]=0
{∵(a−b)2=a2+b2−2ab}
⇒m2+1−2m−m−5=0
⇒m2−3m−4=0
⇒m2−4m+m−4=0
⇒m(m−4)+1(m−4)=0
⇒(m−4)(m+1)=0
⇒m−4=0 or m+1=0
⇒m=4 or m=−1
∴ For m=4 and −1,
given equation will have real and equal roots.