wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Without using trigonometric tables, prove that:

(i) sin53° cos37° + cos53° sin37° = 1
(ii) cos54° cos36° − sin54° sin36° = 0
(iii) sec70° sin20° + cos20° cosec70° = 2
(iv) sin35° sin55° − cos35° cos55° = 0
(v) (sin72° + cos18°)(sin72° − cos18°) = 0
(vi) tan48° tan23° tan42° tan67° = 1

Open in App
Solution

(i) LHS=sin530cos370+cos530sin370 =sin (900370)cos370+cos(900370)sin370 =cos370cos370+sin370sin370 =cos2370+sin2370 =1=RHS(ii) LHS=cos540cos360sin540sin360 =cos(900360)cos360sin(900360)sin360 =sin360cos360cos360sin360 =0=RHS(iii) LHS=sec700sin200+cos200cosec700 =sec(900200)sin200+cos200cosec(900200) =cosec200.1cosec200+1sec200.sec200 =1+1 =2=RHS

iv LHS=sin35° sin55°-cos35° cos55°=sin35° cos90°-55°-cos35° sin90-55°=sin35° cos35°-cos35° sin35°=0=RHS

v LHS=sin72°+cos18°sin72°-cos18°=sin72°+cos18°cos90°-72°-cos18°=sin72°+cos18°cos18°-cos18°=sin72°+cos18°0=0=RHS

vi LHS=tan48° tan23° tan42° tan67°=cot90°-48° cot90°-23° tan42° tan67°=cot42° cot67° tan42° tan67°=1tan42°×1tan67°×tan42°×tan67°=1=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon