The correct option is C −1 J
Given constant force →F=^i+2^j+3^k N
Initial position →r1=(^i+^j+^k) m
Final position →r2=(^i−^j+2^k) m
Work done (W)=→F.→s
To find the displacement →s:
→s=→r2−→r1= change in position
→s=(^i−^j+2^k)−(^i+^j+^k)
→s=(−2^j+^k) m
We know that, if →A=Ax^i+Ay^j+Az^k;→B=Bx^i+By^j+Bz^k,
then →A.→B=AxBx+AyBy+AzBz
∴W=→F.→s=(^i+2^j+3^k).(−2^j+^k)
W=1(0)+2(−2)+3(1)
W=−4+3=−1
∴ Workdone (W)=→F.→s=−1 J
Hence option C is the correct answer.