Write -1 + i √3 in polar form.
Let z = -1 + i √3
Modulus, |z|=√(−1)2+(√3)2=√4=2Argument, θ=tan−1(√31)=tan−1(−√3)=π−π3=2π3Polar Form,2[cos(2π3)+i sin(2π3)]=2[cos(2π3)+i sin(2π3)]
Write the complex number z=i−1cosπ3+i sinπ3 in the polar form.