Heron's formuls - to calculate area of Δ, when height is unkonwn (0r Heron's formula ) A=√S(S−a)(S−b)(S−c)S=a+b+c2=semiperimeter A=14√(a+b+c)(−a+b+c)(a−b+c)(a+b−c)A=14√2(a2+b2+a2c2+b2c2)−(a4+b4+c4)A=14√(a2+b2+c2)2−2(a4+b4+c4)A=14√4a2b2−(a2+b2−c2)2 Heroin triangle = A Δ that has side lengths & area tgat are all ingegers. sometime rational has
b2=h2+d2 ---(1) a2=h2+(c−d)2 ----(2) (1)−(2)b2−a2=d2(c−d)2 ⇒b2−a2((/d)+c−/d)(d−c+d)=c(2d−c) ⇒b2−a2=2cd−c2 ⇒c2+b2−a22c=db2+c2−a22c\ Now, h2=b2−d2⇒h2=b2−(b2+c2−a22c)2=(2bc)2−(b2+c2−a2)24c2=(2bc+b2+c2+a2)(2bc−b2−c2+a2)4c2=((b+c)2−a2)(−(b−c)2+a2)4c2⇒h2=[(b+c)2−a2][a2−(b−c)2]4c2=[(a+b+c)(b+c−a)][(a+b−c)(a−b+c)]4c2=[(2s)2(s−a)][/2(S−c)./2(S−c)./2(S−b)]/4c2h2=4S(S−a)(S−b)(S−c)c2 Now, A=12×c×h ∴A=1/2×c/×/2notc√S(S−a)(S−b)(S−c) ⇒A=√S(S−a)(S−b)(S−c) Other formula resembling Heroin's formula