Algebric Identities
If and equality holds true for all values of he variable, then it is called an Iidentity.
Iidentity 1:(x+y)2=x2+2xy+y2
Iidentity 2: (x−y)2=x2−2xy+y2
Iidentity 3: (x+y)(x−y)=x2−y2
Iidentity 4: (x+y+z)2=2+y2+z2+2xy+2yz+2zx
Iidentity 5: (x+y)3=x3+y3+3xy(x+y)
Iidentity 6: (x−y)3=x3−y3−3xy(x−y)
Iidentity 7: x3+y3=(x+y)(x2−xy+y2)
Iidentity 8: x3−y3=(x−y)(x2+xy+y2)
Iidentity 9: x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)=12(x+y+z){(x−y)2+(y−z)2+(z−x)2}