3x2+2y2=53x2+2y2−5=0
Equation of pair of tangent from external point is SS′=T2
(3x2+2y2−5)(3x21+2y21−5)=3xx1+2yy1−5(3x2+2y2−5)(3(1)2+2(22)−5)=(3x(1)+2y(2)−5)2(3x2+2y2−5)(6)=9x2+16y2+25+24xy−40y−30x18x2+12y2−30=9x2+16y2+25+24xy−40y−30x9x2−24xy−4y2+30x+40y−55=0
Angle between pair of straight lines that is tanθ=∣∣ ∣∣2√h2−aba+b∣∣ ∣∣
Here a=9,b=−4 and h=−12
tanθ=∣∣ ∣ ∣∣2√(12)2−(9)(−4)9+(−4)∣∣ ∣ ∣∣=∣∣∣2√144+365∣∣∣=2×6√55⇒θ=tan−1(12√55)
Hence proved.