wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write tan1(1+x21x)x0 in the simplest form

Open in App
Solution

tan1(1+x21x)

Putting x=tanθ ………. (1)


We get,

tan1(1+x21x)

=tan1(1+tan2θ1tanθ)

=tan1(secθ1tanθ)

=tan1⎜ ⎜ ⎜1cosθ1sinθcosθ⎟ ⎟ ⎟

=tan1(1cosθsinθ)

=tan1⎜ ⎜ ⎜ ⎜1(12sin2θ2)2sinθ2cosθ2⎟ ⎟ ⎟ ⎟cosθ=12sin2θ2

=tan1⎜ ⎜ ⎜2sin2θ22sinθ2cosθ2⎟ ⎟ ⎟

=tan1⎜ ⎜ ⎜sinθ2cosθ2⎟ ⎟ ⎟

=tan1tanθ2

=θ2


By equation (1) and we get,

θ=tan1x

Then,

=θ2=12tan1x


Hence, this is the answer

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon