tan−1(√1+x2−1x)
Putting x=tanθ ………. (1)
We get,
tan−1(√1+x2−1x)
=tan−1(√1+tan2θ−1tanθ)
=tan−1(secθ−1tanθ)
=tan−1⎛⎜ ⎜ ⎜⎝1cosθ−1sinθcosθ⎞⎟ ⎟ ⎟⎠
=tan−1(1−cosθsinθ)
=tan−1⎛⎜ ⎜ ⎜ ⎜⎝1−(1−2sin2θ2)2sinθ2cosθ2⎞⎟ ⎟ ⎟ ⎟⎠∴cosθ=1−2sin2θ2
=tan−1⎛⎜ ⎜ ⎜⎝2sin2θ22sinθ2cosθ2⎞⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜⎝sinθ2cosθ2⎞⎟ ⎟ ⎟⎠
=tan−1tanθ2
=θ2
By equation (1) and we get,
θ=tan−1x
Then,
=θ2=12tan−1x