wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the argument of 1+i31+icosθ+isinθ.

Disclaimer: There is a misprinting in the question. It should be 1+i3 instead of 1+3.

Open in App
Solution

Let the argument of 1+i3 be α. Then,
tanα=31=tanπ3α=π3

Let the argument of 1+i be β. Then,
tanβ=11=tanπ4β=π4

Let the argument of cosθ+isinθ be γ. Then,
tanγ=sinθcosθ=tanθγ=θ

∴ The argument of 1+i31+icosθ+isinθ=α+β+γ=π3+π4+θ=7π12+θ

Hence, the argument of 1+i31+icosθ+isinθ is 7π12+θ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon