wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the argument of (1+3)(1+i)(cosθ+isinθ).

Open in App
Solution

we know that properties of,
(z1.z2)=(z1)+(z2)(z1.z2.z3)=(z1)+(z2)+arg(z3)(1+i3)(1+i)(cosθ+isinθ)=(1+i3)+arg(1+i)+arg(cosθ+isinθ)Now,argumentfindindividually,z1=1+i3[tanα=Im(z1)Re(z1)=31=3,α=π6(z1)=θ=α=π6z2=1+i[tanα=11=1α=π4(z2)=θ=α=π4z3=1(cosθ+isinθ)(z3)=θ[r(cosθ+isinθ)=(z)=θ,|z|=θSubstituteinequationof,(1+i3)(1+i)(cosθ+isinθ)=π6+π4+θ(z)=5π12+θtherefor(z)=5π12+θSo,thatthelastcomplexis5π12+θ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon