Write the complex number z=i−1cosπ3+i sinπ3 in the polar form.
we have, z=i−1cosπ3+i sinπ3
Let z1=i−1⇒z1=−1+i
|z1|=√(−1)2+(1)2=√2
and tan α=∣∣1−1∣∣=1⇒α=π4
θ=arg(z)=π−π4=3π4
[∵x<0,y>o,θ lie in II quadrant]
∴z1=√2(cos3π4+i sin3π4)
Now,z=√2(cos3π4+i sin 3π4)√2(cosπ4+i sin π4)
=√2(cos3π4+i sin 3π4)(cosπ3−i sinπ3)(cosπ3+i sinπ3)(cosπ3−i sinπ3)
[multipying numerator and denominator by(cosπ3)−i sin π3]
⇒z=√2[cos(3π4−π3)+i sin(3π4−π3)]cos2π3+som2π3
⇒z=√2(cos5π12+i sin5π12)
Hence, the polar form of z=i−1cosπ3+i sinπ3
is √2(cos5π3+i sinπ3)