wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Write the complex number z=i1cosπ3+i sinπ3 in the polar form.

Open in App
Solution

we have, z=i1cosπ3+i sinπ3

Let z1=i1z1=1+i

|z1|=(1)2+(1)2=2

and tan α=11=1α=π4

θ=arg(z)=ππ4=3π4

[x<0,y>o,θ lie in II quadrant]

z1=2(cos3π4+i sin3π4)

Now,z=2(cos3π4+i sin 3π4)2(cosπ4+i sin π4)

=2(cos3π4+i sin 3π4)(cosπ3i sinπ3)(cosπ3+i sinπ3)(cosπ3i sinπ3)

[multipying numerator and denominator by(cosπ3)i sin π3]

z=2[cos(3π4π3)+i sin(3π4π3)]cos2π3+som2π3

z=2(cos5π12+i sin5π12)

Hence, the polar form of z=i1cosπ3+i sinπ3

is 2(cos5π3+i sinπ3)


flag
Suggest Corrections
thumbs-up
21
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q9
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon