wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the descending order of k values of the following statements

A: If z=x3sin(xy) and xzx+yzy=kz, then k=
B: If Z=x3+y3xy then x2zx2+y2zxyzx=k
C:z=log(x3+y3+3xy2x+y) andxzx+yzy=k

D: If z=sin1(x+yxy) and xzx+yzy=ktanz, then k=

A
A,C,D,B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
B,A,C,D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
D,C,B, A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A,C, B,D
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is C A,C, B,D
(A)z=x3sin(xy)

This is a homogenous function degree '3'

xzx+yzx=3z here k=3

(B)Z=x3+y3xy

(xy)z=x3+y3

Partially differentiate on both sides w.r.t x and y

z+zx(xy)=3x2(1)

z+zy(xy)=3y2(2)

(1)×x+(2)×y(xy)z+(xy)(xzx+yzy)=3(xy)z

xzx+yzy=2z

Partially differentiate on both sides w.r.t x

x2zx2+zx+y2zxy=2zx

x2zx2+y2zxyzx=1 , here k=1

(C)z=log(x3+y3+3xy2x+y)

(x+y)e2=x3+y3+3xy2

Partially differentiate on both sides w.r.t x and y

e2+e2(x+y)zx=3x2+3y2(3)

e2+e2(x+y)zy=3x2+6xy(4)

(3)×x+(4)×ye2(x+y)+e2(x+y)(azx+yzy)=3(x3+y3+3xy2)
3(x+y)e2

xzx+yzy=2 Here k=2

(D)z=sin1(x+yxy)

sinz=x+yxy

(xy)sinz=x+y

Differentiate partially both sides w.r.t x and y

sinz+(xy)coszzx=12x(5)

sinz+(xy)coszzy=12y(6)

(5)×x+(6)×y(xy)sinz+(xy)cosz(zzx+yzy)=x+y2

(xy)cosz(xzx+yzy)=(xy)sinz2

xzx+yzy=12tanz

Here k=12

A>C>B>D(3>2>1>12)

(A)z=x3sin(xy)

This is a homogenous function degree '3'

xzx+yzx=3z here k=3

(B)Z=x3+y3xy

(xy)z=x3+y3

Partially differentiate on both sides w.r.t x and y

z+zx(xy)=3x2(1)

z+zy(xy)=3y2(2)

(1)×x+(2)×y(xy)z+(xy)(xzx+yzy)=3(xy)z

xzx+yzy=2z

Partially differentiate on both sides w.r.t x

x2zx2+zx+y2zxy=2zx

x2zx2+y2zxyzx=1 , here k=1

(C)z=log(x3+y3+3xy2x+y)

(x+y)e2=x3+y3+3xy2

Partially differentiate on both sides w.r.t x and y

e2+e2(x+y)zx=3x2+3y2(3)

e2+e2(x+y)zy=3x2+6xy(4)

(3)×x+(4)×ye2(x+y)+e2(x+y)(azx+yzy)=3(x3+y3+3xy2)
3(x+y)e2

xzx+yzy=2 Here k=2

(D)z=sin1(x+yxy)

sinz=x+yxy

(xy)sinz=x+y

Differentiate partially both sides w.r.t x and y

sinz+(xy)coszzx=12x(5)

sinz+(xy)coszzy=12y(6)

(5)×x+(6)×y(xy)sinz+(xy)cosz(zzx+yzy)=x+y2

(xy)cosz(xzx+yzy)=(xy)sinz2

xzx+yzy=12tanz

Here k=12

A>C>B>D(3>2>1>12)



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon