(A)z=x3sin(xy)
This is a homogenous function degree '3'
∴x∂z∂x+y∂z∂x=3z ∴ here k=3
(B)Z=x3+y3x−y
(x−y)z=x3+y3
Partially differentiate on both sides w.r.t x and y
z+∂z∂x(x−y)=3x2→(1)
−z+∂z∂y(x−y)=3y2→(2)
(1)×x+(2)×y⇒(x−y)z+(x−y)(x∂z∂x+y∂z∂y)=3(x−y)z
∴x∂z∂x+y∂z∂y=2z
Partially differentiate on both sides w.r.t x
x∂2z∂x2+∂z∂x+y∂2z∂x∂y=2∂z∂x
∴x∂2z∂x2+y∂2z∂x∂y∂z∂x=1 , here k=1
(C)z=log(x3+y3+3xy2x+y)
(x+y)e2=x3+y3+3xy2
Partially differentiate on both sides w.r.t x and y
e2+e2(x+y)∂z∂x=3x2+3y2→(3)
e2+e2(x+y)∂z∂y=3x2+6xy→(4)
(3)×x+(4)×y⇒e2(x+y)+e2(x+y)(a∂z∂x+y∂z∂y)=3(x3+y3+3xy2)
3(x+y)e2
∴x∂z∂x+y∂z∂y=2 Here k=2
(D)z=sin−1(√x+√yx−y)
sinz=√x+√yx−y
(x−y)sinz=√x+√y
Differentiate partially both sides w.r.t x and y
sinz+(x−y)cosz∂z∂x=12√x→(5)
−sinz+(x−y)cosz∂z∂y=12√y→(6)
(5)×x+(6)×y⇒(x−y)sinz+(x−y)cosz(z∂z∂x+y∂z∂y)=√x+√y2
∴(x−y)cosz(x∂z∂x+y∂z∂y)=−(x−y)sinz2
∴x∂z∂x+y∂z∂y=−12tanz
Here k=−12
∴A>C>B>D(∵3>2>1>−12)
(A)z=x3sin(xy)
This is a homogenous function degree '3'
∴x∂z∂x+y∂z∂x=3z ∴ here k=3
(B)Z=x3+y3x−y
(x−y)z=x3+y3
Partially differentiate on both sides w.r.t x and y
z+∂z∂x(x−y)=3x2→(1)
−z+∂z∂y(x−y)=3y2→(2)
(1)×x+(2)×y⇒(x−y)z+(x−y)(x∂z∂x+y∂z∂y)=3(x−y)z
∴x∂z∂x+y∂z∂y=2z
Partially differentiate on both sides w.r.t x
x∂2z∂x2+∂z∂x+y∂2z∂x∂y=2∂z∂x
∴x∂2z∂x2+y∂2z∂x∂y∂z∂x=1 , here k=1
(C)z=log(x3+y3+3xy2x+y)
(x+y)e2=x3+y3+3xy2
Partially differentiate on both sides w.r.t x and y
e2+e2(x+y)∂z∂x=3x2+3y2→(3)
e2+e2(x+y)∂z∂y=3x2+6xy→(4)
(3)×x+(4)×y⇒e2(x+y)+e2(x+y)(a∂z∂x+y∂z∂y)=3(x3+y3+3xy2)
3(x+y)e2
∴x∂z∂x+y∂z∂y=2 Here k=2
(D)z=sin−1(√x+√yx−y)
sinz=√x+√yx−y
(x−y)sinz=√x+√y
Differentiate partially both sides w.r.t x and y
sinz+(x−y)cosz∂z∂x=12√x→(5)
−sinz+(x−y)cosz∂z∂y=12√y→(6)
(5)×x+(6)×y⇒(x−y)sinz+(x−y)cosz(z∂z∂x+y∂z∂y)=√x+√y2
∴(x−y)cosz(x∂z∂x+y∂z∂y)=−(x−y)sinz2
∴x∂z∂x+y∂z∂y=−12tanz
Here k=−12
∴A>C>B>D(∵3>2>1>−12)