Write the domain and range of function f(x)=1√x−|x|.
We have,
f(x)=1√x−|x|
We know that,
|x|={x,if x≥0−xif x<0⇒x−|x|={x−x=0, if x≥0x+x=2x, if x<0
⇒x−|x|≤0 for all x
⇒1√x−|x| does not take real values for any xϵR
⇒ f(x) is not defined for any xϵR
Hence, domain (f) =ϕ = Range (f).