Given: Equation of ellipse,
9x2+5y2−18x−2y−16=0
⇒9(x2−2x+1)+5(y2−2y5+125)−9−15−16=0
⇒9(x−1)2+5(y−15)2=1265
⇒9(x−1)21265+5(y−15)21265=1
⇒(x−1)212645+(y−15)212625=1
On comparing with standard form,
(x−h)2a2+(y−k)2b2=1,
We get, a2=12645 and b2=12625
Eccentricity,
e=√1−a2b2 [∵b>a]
⇒e=
⎷1−1264512625
⇒e=√1−2545
e=√1−59=√49
⇒e=23