Write the equation of the parabola whose vertex is at (-3,0) and the directrix is x+5=0
Here, vertex = (-3,0)
∴ a=−3 and directrix,x+5=0
Since, axis of the parabola is a line perpendicular to directrix and A is the mid-point of AS.
Then,−3=x1−52
⇒ −6=x1−5 ⇒ x1=−1
0=0+y12⇒=0
∴ S=(−1,0)
∴ PM=PS
⇒|x+5|=√(x+1)2+y2
⇒x2+2x+1+y2=x2+10x+25
⇒ y2=8x+24
⇒ y2=8(x+3)