Finding sequence and corresponding series.
Given, a1=a2=2 and an=an−1−1 ∀ n>2,n∈N
Substituting n=3,4 and 5 in an, we get
a3=a3−1−1
⇒a3=a2−1
⇒a3=2−1
⇒a3=1
a4=a4−1−1
⇒a4=a3−1
⇒a4=1−1
⇒a4=0
a5=a5−1−1
⇒a5=a4−1
⇒a5=0−1
⇒a5=−1
Hence, the first five terms of the sequence are 2,2,1,0,−1 and corresponding series is 2+2+1+0+(−1)+⋯.