Finding sequence and corresponding series.
Given, a1=3,an=3an−1+2 for all n>1,n∈N.
Substituting n=2,3,4 and 5 in an, we get
a2=3a2−1+2
⇒a2=3a1+2
⇒a2=3×3+2
⇒a2=11
a3=3a3−1+2
⇒a3=3a2+2
⇒a3=3×11+2
⇒a3=35
a4=3a4−1+2
⇒a4=3a3+2
⇒a4=3×35+2
⇒a4=107
a5=3a5−1+2
⇒a5=3a4+2
⇒a5=3×107+2
⇒a5=323
Hence, the first five terms of the sequence are 3,11,35,107, and 323 and corresponding series is 3+11+35+107+323+⋯.