Write the following cubes in expanded form:
(i) (2x+1)3
(ii)(2a−3b)3
(iii) (32x+1)3
(iv) (x−23y)3
It is known that,
(a+b)3=a3+b3+3ab(a+b)...(A) and
(a−b)3=a3−b3−3ab(a−b)...(B)
(i) (2x+1)3=(2x)3+1+3(2x)(1)(2x+1)
=8x3+1+6x(2x+1)
=8x3+1+12x2+6x
=8x3+12x2+6x+1
(ii) (2a−3b)3=(2a)3−(3b)3−3(2a)(3b)(2a−3b)
=8a3−27b3−18ab(2a−3b)
=8a3−27b3−36a2b+54ab2
(iii) (32x+1)3=(32x)3+1+3(32x)(32x+1)
=278x3+1+92x(32x+1)
=278x3+1+274x2+92x
=278x3+274x2+92x+1
(vi) (x−23y)3=x3−(23y)3−3x(x−23y)
=x3−827y3−2xy(x−23y)
=x3−827y3−2x2y+43xy2