wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the following functions in the simplest form: tan11+x21x,x0

Open in App
Solution

Given :
tan11+x21x
Substitute x=tanθ in given equation

tan11+x21x=tan1(1+tan2θ1tanθ)
tan11+x21x=tan1(sec2θ1tanθ)
tan11+x21x=tan1(secθ1tanθ)
tan11+x21x=tan1⎜ ⎜ ⎜1cosθ1sinθcosθ⎟ ⎟ ⎟
tan11+x21x=tan1(1cosθsinθ)
Using half angle formula
tan11+x21x=tan1⎜ ⎜ ⎜2sin2θ22sinθ2cosθ2⎟ ⎟ ⎟
tan11+x21x=tan1⎜ ⎜ ⎜sinθ2cosθ2⎟ ⎟ ⎟
tan11+x21x=tan1(tanθ2)=θ2
x=tanθ
θ=tan1x
So,
θ2=12tan1x


flag
Suggest Corrections
thumbs-up
26
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon