Given :
tan−1√1+x2−1x
Substitute x=tanθ in given equation
⇒tan−1√1+x2−1x=tan−1(√1+tan2θ−1tanθ)
⇒tan−1√1+x2−1x=tan−1(√sec2θ−1tanθ)
⇒tan−1√1+x2−1x=tan−1(secθ−1tanθ)
⇒tan−1√1+x2−1x=tan−1⎛⎜
⎜
⎜⎝1cosθ−1sinθcosθ⎞⎟
⎟
⎟⎠
⇒tan−1√1+x2−1x=tan−1(1−cosθsinθ)
Using half angle formula
⇒tan−1√1+x2−1x=tan−1⎛⎜
⎜
⎜⎝2sin2θ22sinθ2cosθ2⎞⎟
⎟
⎟⎠
⇒tan−1√1+x2−1x=tan−1⎛⎜
⎜
⎜⎝sinθ2cosθ2⎞⎟
⎟
⎟⎠
⇒tan−1√1+x2−1x=tan−1(tanθ2)=θ2
∵x=tanθ
⇒θ=tan−1x
So,
θ2=12tan−1x