Write the following in the simplest form.
tan−11√x2−1,|x|>1
Let x=sec θ,then θ=sec−1x
So,tan−11√x2−1=tan−1(1√sec2θ−1)=tan−1(1√tan2θ)
(∵sec2θ−tan2θ=1)
=tan−1(1tanθ)=tan−1(cotθ)=tan−1(tan(π2−θ)) (∵tan(π2−θ)=cotθ)
=π2−θ=π2−sec−1x
tan−1√1+x2−1x,x≠0