wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the following in the simplest form.

tan11+x21x,x0

Open in App
Solution

Let x=tanθ,thenθ=tan1x
tan11+x21x=tan11+tan2θ1tanθ=tan1sec2θ1tanθ


[1+tan2θ=sec2θ]

=tan1[1cosθ1sin θcosθ]=tan1[1cosθcosθ×cosθsinθ]

tan1[1cos θsin θ]=tan1[2in2θ22sinθ2cosθ2] 1cosθ=2sin2θ2and sinθ=2sinθ2cosθ2

=tan1[2sinθ22cosθ2]=tan1[tanθ2]=θ2=tan1x2

tan11+x21x=12tan1x


flag
Suggest Corrections
thumbs-up
31
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon