Write the following in the simplest form.
tan−1√1+x2−1x,x≠0
Let x=tanθ,thenθ=tan−1x
∴tan−1√1+x2−1x=tan−1√1+tan2θ−1tanθ=tan−1√sec2θ−1tanθ
[∵1+tan2θ=sec2θ]
=tan−1[1cosθ−1sin θcosθ]=tan−1[1−cosθcosθ×cosθsinθ]
tan−1[1−cos θsin θ]=tan−1[2in2θ22sinθ2cosθ2] ⎡⎣∵ 1−cosθ=2sin2θ2and sinθ=2sinθ2cosθ2⎤⎦
=tan−1[2sinθ22cosθ2]=tan−1[tanθ2]=θ2=tan−1x2
∴ tan−1√1+x2−1x=12tan−1x