1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Distance Formula
Write the giv...
Question
Write the given trigonometric expression in its simplest form.
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
,
a
>
0
;
−
a
√
3
≤
x
≤
a
√
3
.
Open in App
Solution
Consider the given trigonometric expression.
⇒
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
Substitute
x
=
a
tan
θ
.
⇒
tan
−
1
(
3
a
2
(
a
tan
θ
)
−
(
a
tan
θ
)
3
a
3
−
3
a
(
a
tan
θ
)
2
)
⇒
tan
−
1
(
3
a
3
tan
θ
−
a
3
tan
3
θ
a
3
−
3
a
3
tan
2
θ
)
⇒
tan
−
1
(
a
3
(
3
tan
θ
−
tan
3
θ
)
a
3
(
1
−
3
tan
2
θ
)
)
⇒
tan
−
1
(
3
tan
θ
−
tan
3
θ
1
−
3
tan
2
θ
)
Using the formula of
tan
3
θ
, we have,
⇒
3
θ
Since,
x
=
a
tan
θ
x
a
=
tan
θ
θ
=
tan
−
1
(
x
a
)
Therefore,
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
=
3
θ
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
=
3
tan
−
1
(
x
a
)
This is the simplest form of the given expression.
Suggest Corrections
0
Similar questions
Q.
Write the function in the simplest form:
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
,
a
>
0
;
−
a
√
3
≤
x
≤
a
√
3
Q.
Differentiate
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
,
−
1
√
3
<
x
a
<
1
√
3
Q.
Evaluate:
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
Q.
If
T
a
n
−
1
(
3
a
2
X
−
X
3
a
3
−
3
a
X
2
)
=
K
T
a
n
−
1
(
x
a
)
then k =
Q.
Solve :
d
d
x
[
T
a
n
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
]
=
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
MATHEMATICS
Watch in App
Explore more
Distance Formula
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app