Let f(θ)=5cosθ+3cos(θ+π3)+3then
f(θ)=5cosθ+3cos(θ+π3)+3
=5cosθ+3(cosθcosπ3−sinθsinπ3)+3
=5cosθ+32cosθ−3√32sinθ+3
=132cosθ−3√32sinθ+3 ...(i)
Now,
−√(132)2+(3√32)2≤132cosθ−3√32sinθ≤√(132)2+(3√32)2
⇒−7≤132cosθ−3√32sinθ+3≤7+3
⇒−4≤132cosθ−3√32sinθ+3≤10
⇒−4≤5cosθ−3cos(θ+π3)+3≤10 [Using 1] Hence, the required interval is [-4,10].