sin2x−cosx=14
⇒4sin2x−4cosx=1
⇒4(1−cos2x)−4cosx=1
⇒4−4cos2x−4cosx=1
⇒4cos2x+4cosx−3=0
⇒4cos2x+6cosx−2cosx−3=0
⇒(2cosx−1)(2cosx+3)=0
⇒(2cosx−1)=0 or (2cosx+3)=0
⇒cosx=12 or cosx=−32
As we know cosx∈[−1,1], so cosx=12
For x∈[0,2π], we get
x=π3,5π3
Hence, the number of values of x is 2.