We know that properties of inverse circular functions, cot−1x=π–cot−1(x) and tan−1(x)+cot−1(x)=π2
Let x=√3
tan−1(√3)=π3
cot−1(√3)=π−π6
So, tan−1√3−cot−1(−√3)=π3−(π−π6)=−π2.