wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the sequence with nth term:

(i) an = 3 + 4n

(ii) an = 5 + 2n

(iii) an = 6 − n

(iv) an = 9 − 5n

Show that all of the above sequences form A.P.

Open in App
Solution

In the given problem, we are given the sequence with the nth term ().

We need to show that these sequences form an A.P

(i)

Now, to show that it is an A.P, we will first find its few terms by substituting

So,

Substituting n = 1, we get

Substituting n = 2, we get

Substituting n = 3, we get

Further, for the given sequence to be an A.P,

Common difference (d)

Here,

Also,

Since

Hence, the given sequence is an A.P

(ii)

Now, to show that it is an A.P, we will find its few terms by substituting

So,

Substituting n = 1, we get

Substituting n = 2, we get

Substituting n = 3, we get

Further, for the given to sequence to be an A.P,

Common difference (d)

Here,

Also,

Since

Hence, the given sequence is an A.P

(iii)

Now, to show that it is an A.P, we will find its few terms by substituting

So,

Substituting n = 1, we get

Substituting n = 2, we get

Substituting n = 3, we get

Further, for the given to sequence to be an A.P,

Common difference (d)

Here,

Also,

Since

Hence, the given sequence is an A.P

(iv)

Now, to show that it is an A.P, we will find its few terms by substituting

So,

Substituting n = 1, we get

Substituting n = 2, we get

Substituting n = 3, we get

Further, for the given sequence to be an A.P,

Common difference (d)

Here,

Also,

Since

Hence, the given sequence is an A.P.


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to AP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon