Write the solution set of ∣∣x+1x∣∣>2
∣∣x+1x∣∣>2⇒x+1x<−2 or x+1x>2Case 1:When x+1x<−2x+1x<−2⇒x2+2x+1x<0⇒(x+1)2x<0(x+1) positive for x>−1,(x+1) negative for x<0,x zero for x=0⇒(x+1)2x<0,for x<−1or (x+1)2x<0 for −1<x<0Case 2:When x+1x>2x+1x>2⇒x2−2x+1x>0⇒(x−1)2x>0(x−1) positive for x>1,(x−1) negative for x<1,(x−1)=0 for x=1x positive for x>0,x negative for x<0,x zero for x=0⇒(x−1)2x>0 for 0<x<1 or (x−1)2x>0 for x>1Combining 1 and 2,we obtain that the solution set of the given inequation is x<−1 or −1<x<0 or 0<x<1 or x>1⇒x ϵ R={−1,0,1}