Write the sum of 20 terms of the series: 1+12(1+2)+13(1+2+3)+....
Let the nth term of the given series is Tn and Sn be the sum of the given series. ∴ Tn =1n[1+2+3...n]=1n[n2(2×1+(n−1)×1)]=1n timesn2[2+n−1]=12(n+1)∴Sn=∑nk−112(k+1)=12∑nk−1k+12∑nk−11=12[n(n+1)2]+12×n=n(n+1)4+n2=n(n+1)+2n4=n[n+1+2]4=n[n+3]4Putting, n=20, we getS20=20[20+3]4=5×23=115