Write the sum of the coefficients in the expansion of (1−3x+x2)111.
(1−3x+x2)111
=111C0(1)111+111C1(1)110(−3x+x2)+111C2(1)109(−3x+x2)2+....+111C111(−3x+x2)111
Let x =1 on both sides.
(1−3x+1)111
=111C0(1)111+111C1(1)110(−3+1)+111C2(1)109(−3+1)2+....+111C111(−3+1)111
(−1)111=111C0(1)111+111C1(1)110(−2)+111C2(1)109(−2)2+....+111C111(−3+1)111
The sum of the coefficients is (−1)111=−1.