Write the sum of the series : 12−22+32−42+52−62+...+(2n−1)2−(2n)2
12−22+32−42+52−62+...+(2n−1)2−(2n)2
We have, a2−b2=(a−b)(a+b)
12−22+32−42+52−62+...+(2n−1)2−(2n)2
=(1−2)(1+2)+(3−4)(3+4)+...(2n−1−2n)(2n−1+2n)
=(−1)(1+2)+(−1)(3+4)+...(−1)(2n−1+2n)=−1[1+2+3+4+...2n−1+2n]
=−1[2n(2n+1)2] [∵1+2+3.....x=∑x=x(x+1)2]
=−n(2n+1)
Hence, sum of the series =−n(2n+1)