1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Improper Integrals
Write the val...
Question
Write the value of 2 (sin
6
θ + cos
6
θ) −3 (sin
4
θ + cos
4
θ) + 1.
Open in App
Solution
2
sin
6
θ
+
cos
6
θ
-
3
sin
4
θ
+
cos
4
θ
+
1
=
2
sin
2
θ
+
cos
2
θ
sin
4
θ
+
cos
4
θ
-
sin
2
θ
.
c
os
2
θ
-
3
sin
4
θ
+
cos
4
θ
+
1
=
2
.
1
sin
4
θ
+
cos
4
θ
-
sin
2
θ
.
c
os
2
θ
-
3
sin
4
θ
+
cos
4
θ
+
1
=
2
sin
4
θ
+
cos
4
θ
-
2
sin
2
θ
.
c
os
2
θ
-
3
sin
4
θ
+
cos
4
θ
+
1
=
-
sin
4
θ
+
cos
4
θ
-
2
sin
2
θ
.
c
os
2
θ
+
1
=
-
sin
4
θ
+
cos
4
θ
+
2
sin
2
θ
.
c
os
2
θ
+
1
=
-
sin
2
θ
+
cos
2
θ
2
+
1
=
-
1
+
1
=
0
Suggest Corrections
0
Similar questions
Q.
Prove that
2
(
sin
6
θ
+
cos
6
θ
)
−
3
(
sin
4
θ
+
cos
4
θ
)
+
1
=
0
.
Q.
2
(
s
i
n
6
θ
+
c
o
s
6
θ
)
−
3
(
s
i
n
4
θ
+
c
o
s
4
θ
)
is equal to _____.
Q.
Prove the following identities
2
(
s
i
n
6
θ
+
c
o
s
6
θ
)
−
3
(
s
i
n
4
θ
+
c
o
s
4
θ
)
+
1
=
0
Q.
Use the suitable identity and simplify the given expression.
2
(
s
i
n
6
θ
+
c
o
s
6
θ
)
−
3
(
s
i
n
4
θ
+
c
o
s
4
θ
)
+
1
Q.
2 (sin
6
θ + cos
6
θ) − 3 (sin
4
θ + cos
4
θ) is equal to
(a) 0
(b) 1
(c) −1
(d) None of these