Write the value of cos2 76∘+cos2 16∘−cos 76∘ cos 16∘
cos2 76∘+cos2 16∘−cos 76∘ cos 16∘
=12[1+cos 2 (76)∘+1+cos 2 (16)∘−cos (76+16)∘−cos (76−16)∘]=12[2−12+cos 152∘+cos 32∘−cos 92∘]=12[32+cos 152∘+2 sin 92+322 sin 92−322]=12[32+cos 152∘+2 sin 124∘2 sin 60∘2]=12 [32+cos 152∘+2 sin 62∘ sin 30∘]
=12[32+cos 152∘+sin 62∘]=12[32+cos 152∘+sin(90−28)∘]=12[32+cos 152∘+cos 28∘]=12[32+2 cos 152+282 cos 152−282]=12[32+2 cos 90∘ cos 124∘2]=12[32+2(0) cos 62∘]=34
cos2 76∘+cos2 16∘−cos 76∘ cos 16∘=34