Write the value of cosec2 θ (1+cos θ)(1−sin θ).
cosec2θ(1+cosθ)(1−sinθ)= (1+cos θ)(1−sin θ)sin2 θ=(1+cos θ)sinθ×(1−sinθ)sinθ=2cos2θ22sinθ2cosθ2×(cosθ2+sinθ2)22sinθ2cosθ2=12(1−cotθ2)2
We have changed the given expression in terms of cotθ2
So the expression can not be a constant value.