Write the value of limx→∞n!+(n+1)!(n+1)!+(n+2)!
limx→∞n!+(n+1)!(n+1)!+(n+2)!=limx→∞n![1+n+1](n+1)![1+n+2]=limx→∞(n+2)(n+1)(n+3)=limx→∞(1n+2n2)(1+1n)(1+3n)=01×1=0=limx→∞n!+(n+1)!(n+1)!+(n+2)!=0
Write the value of limx→∞1+2+3+⋯+nn2