Write the value of θε(π2) for which area of the triangle formed by points O(0,0), A(a cos θ,b sin θ) and (a cos θ,b sin θ) is maximam.
Area of triangle formed by O(0,0), A(a cos θ,b sin θ) and (a cos θ,b sin θ)
A=12[x1(u2−y3)+x2(y3−y1)+x3(y1−y2)]
=[12[0(b sin θ)+a cos θ(−b sin θ−0)+a cos θ(0−b sin θ)]]
=[12[−ab cos θ sin θ−ab sin θ cos θ]]
=[12[−2ab sin θ cos θ]]
=|−ab sin θ cos θ|
=ab2|sin 2θ|
A is maximum if sin 2θ=1
2θ=π2
θ=π4