x+12=y+1−6=2+11K1 ---(1)
and x−31=y−5−2=3−71K ----(2)
Point on line (1) is A(2K−1,6K−1,K−1)
Point on line (2) is B(t+3,−2t+5,t+7)
If AB is the shortest distance than direction ratios of AB is
=((2K−1)−(t+3),(−6K−1)−(−2t+5),(k−1)−(t+7))
i.e (2K−t−4,−6K+2t−6,k−t−8)
AB is ⊥ to lines (1) & (2)
2∗(2K−T−4)−6(−6k+2t−6)+1(K−t−8)=0
4K−2t−8+36K−12t+36+K−t−8=0
41K−15t+20=0 ---(3)
& 1(2K−t−4)−2(−6K+2t−6)+1(K−t−8)=0
2K−t−4+12K−4t+12+K−t−8=0
15K−6t=0
K=6t15=2t5
41×2t5−15t+20=0
82t−75t+100=0
7t=−100
t=−10007
K=−407
Point A=(−877,2337,−477),B(−797,2357,−517)
Shortest distance AB=√(−797+877)(2357−2337)2+(−577+477)2
=√(87)2+(27)2+(−47)2
⇒√64+4+1672
⇒√8472⇒2√217
direction ratio of shortest distance line are (−87,−27,47)
equation of shortest distance
x+87/7−8/7=y−233/7−2/7=3+47/74/7
or 7x+87−8=7y−233−2=73+474