Write True or False and justify your answer in each of the following :
AB is a diameter of a circle and AC is its chord such that ∠BAC=300. If the tangent at C intersects AB extended at D, then BC = BD.
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Ambiguous
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Data Insufficient
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True Given−ABisthediameterofacirclemaking30oanglewiththchordAC.PDisthetangentatCwhichmeetstheextendedABatD.Tofindout−thestatementBC=BDistrueorfalse.Justification−∠ACBistheanglesubtendedbythediameterABonthecircumferenceatC.∴∠ACB=90o.....(i)(semicircularangle)and∠CAB=30o(given).∴∠ACB+∠CAB+∠ABC=180o⟹30o+90o+∠ABC=180o⟹∠ABC=60o........(ii)But∠CAB+∠DBC=180o(linearpair)∴From(ii)∠DBC=120o.....(a)NowPDisthetangentatC&ACisachorddrawnfromC.∴∠ACP=∠BAC(correspondingalt.segmentangles)∴∠ACP=60o(fromii).......(iii)Now∠BCD=180o−(∠ACP+∠ACB)(sincetheyareonthesameline&haveverticesatthesamepoint)∴∠BCD=180o−(∠BCD=180o−(60o+90o)=30o(fromi&iii).........(iv)SoinΔBDCwehave∠BDC=180o−120o−30o=30o(froma&iv)i.eΔBDCisisosceleswithbaseangles∠BCD&∠BDC.∴BC=BD.SothestatementBC=BDistrueAns−True