wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write True or False and justify your answer in each of the following :

If angle between two tangents drawn from a point P to a circle of radius a and centre O is 600, then OP =a3.

A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Ambiguous
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Data insufficient
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B False
GivenPA&PBaretangentstothecirclewithcenterOatA&Brespectively.RadiiOA&OBare=aAPB=60oTofindoutThestatement,OP=a3,istrueorfalse.JustificationPA&PBaretangentstothecirclewithatA&Brespectively.OAP=90o=OBP.....(i)soΔOAP&ΔOBParerighttriangleswithhypotenuseasOPNowbetweenΔOAP&ΔOBPwehaveOAP=90o=OBP.....(fromi)sideOA=sideOBandthehypotenuseOPiscommon.ByRHStestΔOAP&ΔOBParecongruent.OPA=OPB=60o2=30o........(ii)soPAQ=90O30o=60oPBA=60oSoΔPABisequilateralAB=APAgaininquadrilateralOAPBA=B=90o&P=60oAOB=360o(90o+90o+60o)=120o......(iii)andSoinΔAOBOAQ+OBQ=180o120o=60o.ButOA=OB(radiiofthesamecircle.SoΔAOBisanisoscelesone.OAQ=OBQ=30oinΔAPOOPA+PAO+AOP=180o(anglesumpropertyoftriangles)30o+90o+AOP=180oAOP=60o....(iii)AgaininΔAOQAQO=OAQ+AOQ+OQA=180o(anglesumpropertyoftriangles)30o+60o+OQA=180oOQA=90oΔOQAisarightone.SobetweenΔOQA&ΔOPAwehavetheanglesequali.etheyaresimilar.AQa=APOPAB2a=APOPOP=2a(AB=AP)SotheThestatement,OP=a3,isfalse.AnsFalse
113586_81715_ans_4ae79ccfdfbc418484d53b945f8728cf.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Bulls Eye View of Geometry
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon