Write True or False and justify your answer in each of the following :
If angle between two tangents drawn from a point P to a circle of radius a and centre O is 600, then OP =a√3.
A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Ambiguous
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Data insufficient
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B False Given−PA&PBaretangentstothecirclewithcenterOatA&Brespectively.RadiiOA&OBare=a∠APB=60oTofindout−Thestatement,OP=a√3,istrueorfalse.Justification−PA&PBaretangentstothecirclewithatA&Brespectively.∴∠OAP=90o=∠OBP.....(i)soΔOAP&ΔOBParerighttriangleswithhypotenuseasOPNowbetweenΔOAP&ΔOBPwehave∠OAP=90o=∠OBP.....(fromi)sideOA=sideOBandthehypotenuseOPiscommon.∴ByRHStestΔOAP&ΔOBParecongruent.⟹∠OPA=∠OPB=60o2=30o........(ii)so∠PAQ=90O−30o=60o⟹∠PBA=60oSoΔPABisequilateral⟹AB=APAgaininquadrilateralOAPB∠A=∠B=90o&∠P=60o∴∠AOB=360o−(90o+90o+60o)=120o......(iii)andSoinΔAOB∠OAQ+∠OBQ=180o−120o=60o.ButOA=OB(radiiofthesamecircle.SoΔAOBisanisoscelesone.∴∠OAQ=∠OBQ=30o∴inΔAPO∠OPA+∠PAO+∠AOP=180o(anglesumpropertyoftriangles)⟹30o+90o+∠AOP=180o⟹∠AOP=60o....(iii)AgaininΔAOQ∠AQO=∠OAQ+∠AOQ+∠OQA=180o(anglesumpropertyoftriangles)⟹30o+60o+∠OQA=180o⟹∠OQA=90o⟹ΔOQAisarightone.SobetweenΔOQA&ΔOPAwehavetheanglesequali.etheyaresimilar.∴AQa=APOP⟹AB2a=APOP⟹OP=2a(AB=AP)SotheThestatement,OP=a√3,isfalse.Ans−False