(x+1) is a factor of the polynomial
(a) x3−2x2+x+2 (b) x3+2x2+x−2
(c) x3+2x2−x−2 (d) x3+2x2−x+2
If (x+1) is a factor then remainder will be zero or f(−1)=0
(a) f(x)=x3−2x2+x+2f(−1)=(−1)3−2(−1)2+(−1)+2=−1−2−1+2=−2≠0
(b) f(x)=x3+2x2+x−2f(−1)=(−1)3+2(−1)2+(−1)−2=−1+2−1−2=−2≠0
(c) f(x)=x3+2x2−x−2f(−1)=(−1)3+2(−1)2−(−1)−2=−1+2+1−2=0
(d) f(x)=x3+2x2−x+2f(−1)=(−1)3+2(−1)2−(−1)+2=−1+2+1+2=4≠0
So the answer is (c)