Soln:
[(x+1)(x+4)][(x+2)(x+3)]=24
(x2+5x+4)(x2+5x+6)=24
Let x2+5x=k
(k+4)(k+6)=24
k2+10k=0
k(k+10)=0
K=0,k=−10
x2+5x=0,x2+5x=−10
x(x+5)=0,x2+5x+10=0
x=0,x=−5;D=25−40=−15 No real roots.
So, roots are 0, -5. Hence option (e)
2nd Method:- By factorising 24 into four factors then only possibilities are-
24=1×2×3×4 or −1×−2×−3×−4
thus we can find roots easily that is 0 and -5. choice (e) .