The correct option is A y=3x
Given, (x−1)(y−2)=5
Let x−1=X,y−2=Y
X2+(Y+4)2=r2 .......(1)
XY=5 .......(2)
Substitute X from (2) to (1), we get
25Y2+Y2+8Y+16=r2
Y4+8Y3+16Y2−r2Y2+25=0
Sum of the roots Y1+Y2+Y3+Y3=−8
y1+y2+y3+y3=0
If (xi,yi) is the point of intersection of given curves, then
4∑xij=14=1+12 and 4∑yij=14=0
Now, 3∑xii=13=4−x43 and 3∑yii=13=−y43
Centroid ⎛⎝∑3j=1x13,∑3i=1y13⎞⎠ lies on the line y=3x−4
Hence, −y43=3(4−x4)3−4
⇒y4=3x4
Therefore, the locus of D is y=3x.