x2+x+1√2=0
Here x2+x+1√2=0
Comparing the given quadratic equation with ax2+bx+c=0, we have
a=1,b=1 and c=1√2
∴ x=−1±√(1)2−4×1×1√22×1
=−1±√1−2√22=−1±√(2√2−1)i2
Thus x=−1+√(2√2−1)i2
and x=−1−√(2√2−1)i2