(x2−y2)dx+2xydy=0
⇒2xydy=(y2−x2)dx
⇒dydx=y2−x22xy
putting y=vx
⇒dydx=v+xdvdx
⇒v+xdvdx=v2x2−x22x×vx
⇒v+xdvdx=v2−12v
⇒xdvdx=v2−12v−v
⇒xdvdx=v2−1−2v22v
⇒xdvdx=−v2−12v
⇒∫2vv2+1=−∫dxx
pu8tting v2+1=t
2vdv=dt
⇒∫dtt=−∫dxx
⇒log|t|=−log|x|+logc
⇒log(v2+1)=−log|x|+logc
⇒log(y2+x2x2)=log(cx)
⇒x2+y2x2=cx
⇒x2+y2=cx