The correct option is A √2c
(x2+y2)dy=xydx
dydx=xyx2+y2
dydx=xyx2x2+y2x2=yx1+y2x2
Let yx=z
y=zx
dydx=xdzdx+z
xdzdx+z=z1+z2
xdzdx=z1+z2−z
xdzdx=−z31+z2
(1+z2)z3dz=−dxx
∫(1z3+1z)dz=∫−1xdx
z−2−z+lnz=−lnx+c
−12z2+lnxz=c
−x22y2+lny=c
x=x0,y=1
−x202+ln1=−c
−x202=−c;x202=c
x0=√2c