The correct option is
C x3y−3=3sinx−cx2y−x3dydx=y4cosx⇒−3dydxy4+3xy3=3cosxx3Let v=1y3⇒dvdx=−3dydxy4
∴dvdx+3vx=3cosxx3
Let μ(x)=e∫3xdx=x3
Multiply both sides by μ(x)
x3dvdx+(3x2)v=3cosx⇒x3dvdx+ddx(x3)v=3cosx
Applying gdfdx+fdgdx=ddx(fg)
ddx(x3v)=3cosx⇒∫ddx(x3v)dx=∫3cosxdx⇒x3v=3sinx+c⇒x3y−3=3sinx+c